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4. Rationale:  
Cerebral small vessel disease (CSVD), a set of pathological processes of various etiologies that 
affect cerebral small arteries, arterioles, venules, and capillaries, is associated with dementia.1 
Structural and functional neuroimaging techniques, including magnetic resonance imaging 
(MRI), are key in the study of cerebral small vessels and other attributes of brain structure and 
function.2 White matter hyperintensities (WMH), have been found to be associated with 
decreased cognitive performance, particularly executive function.3 However, reported 
correlations between clinical features of CSVD (e.g., lacunar infarct, chronic hypoperfusion) and 



conventional MRI measures have not been consistent, perhaps reflecting the inability to 
characterize microstructural properties related to WMH with a conventional MRI.4 
 
Diffusion tensor imaging (DTI) uses a tensor model to measure both the rate and directionality of 
the diffusion distribution of water molecules in tissue.5 Tractography can be used to spatially 
characterize white matter diffusion abnormalities along the pathway of a specific tract, with high 
sensitivity in detecting cerebral damage.2 Mean diffusivity (MD) represents the average rate of 
diffusion independent of the directionality, and fractional anisotropy (FA) indicates the fraction 
of the tensor that can be assigned to anisotropic diffusion. Higher MD and lower FA are thought 
to be independently related to white matter tract integrity. DTI is expected therefore to provide a 
better measure of white matter integrity than conventional MRI.  
 
Increased arterial stiffness, a marker of arterial wall remodeling, is associated with cognitive 
decline and dementia.6 Central arterial stiffness and pressure pulsatility, in addition to previously 
studied risk factors, such as HbA1c, hypertension, total- and LDL-cholesterol,7 are associated 
with CSVD and WMH8-11. Increased central arterial stiffness may lead to insufficient flow wave 
dampening and transmission of excessive pulsatile energy into the microvascular bed, 
particularly in low impendence organs such as the brain.12 The associations between arterial 
stiffness and pressure pulsatility (measured with central pulse pressure (cPP)) have been reported 
by studies using conventional MRI data,9,13-15 while only a few studies have examined 
associations of white matter outcomes measured with DTI. The Framingham Heart Study Third-
Generation cohort showed that higher carotid-femoral pulse wave velocity was associated with 
lower FAs. 16,17 Tarumi et al.18 showed that higher cfPWV is independently associated with 
lower FA. Sala et al. 19 indicated that increased aortic arch pulse wave velocity (PWV) was 
associated with decreased white matter FA among patients with hypertension. Tjeerdema et al. 20 
showed that aortic stiffness is independently associated with reduced white matter integrity in 
patients with type 1 diabetes. However, several of these studies were based on individuals with 
chronic conditions and homogeneous study populations (i.e., mostly white participants). 
Additionally, previous studies reported that African Americans have higher arterial stiffness and 
pulsatility,21,22 as well as higher prevalence of white matter disease23, but no studies to date have 
examined the associations between arterial stiffness and white matter integrity in a biracial 
sample of older adults.  Moreover, no study has examined the potential joint association of 
arterial stiffness and pulsatility in the association with white matter integrity. 
 
Drawing on the large and well-characterized cohort of Whites and Blacks in ARIC-NCS, we 
propose to examine the association of central arterial stiffness and pulsatility with white matter 
integrity, measured by DTI, among a community-dwelling sample of older adults.  
 
5. Main Hypothesis/Study Questions: 
Aim 1: Examine the association of aortic arterial stiffness (i.e. carotid femoral pulse wave 
velocity [cfPWV]) with white matter integrity (measured with DTI) among older adults.  

Aim 1.1. Examine the association of cfPWV with FA measured with DTI among older 
adults. 
Aim 1.2. Examine the association of cfPWV with MD measured with DTI among older 
adults. 



We hypothesize that a higher cfPWV is associated with greater MD and lower FA measured 
with DTI among older adults. 

Aim 2: Examine the association of pressure pulsatility (i.e. central pulse pressure [cPP]) with 
white matter integrity measured with DTI among older adults.  

Aim 2.1. Examine the association of cPP with FA measured with DTI among older adults. 
Aim 2.2. Examine the association of cPP with MD measured with DTI among older adults. 
We hypothesize that higher cPP are associated with greater MD and lower FA measured 
with DTI among older adults. 

Aim 3: Examine the interaction of aortic arterial stiffness and pulsatility with white matter 
integrity measured with DTI among older adults. 

Aim 3.1. Examine the joint association of cfPWV and cPP with FA measured with DTI 
among older adults. 
Aim 3.1. Examine the joint association of cfPWV and cPP with MD measured with DTI 
among older adults. 
We hypothesize that cfPWV and cPP are jointly associated with greater MD and lower FA 
measured with DTI in an additive manner among older adults. 

Aim 4: Estimate the race-specific association of cfPWV, cPP on MD and FA measured with 
DTI. 

Aim 4.1. Examine the association of cfPWV and cPP independently, on FA measured with 
DTI among Whites and Blacks, respectively. 
Aim 4.2. Examine the association of cfPWV and cPP independently on MD measured with 
DTI among Whites and Blacks, respectively. 
Aim 4.3. Examine the joint association of cfPWV and cPP on FA measured with DTI 
among Whites and Blacks, respectively. 
Aim 4.4. Examine the joint association of cfPWV and cPP with MD measured with DTI 
among Whites and Blacks, respectively. 
We hypothesize that the associations of cfPWV and cPP with FA and MD among Blacks are 
further away from the null (i.e. smaller association for FA and larger association for MD), 
compared to Whites. 

 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
Study design: Cross-sectional analysis at Visit 5 of the association between arterial 
stiffness/pressure pulsatility and white matter integrity measured by DTI. 
 
The following will be exclusions for the primary analyses: Prior history of stroke, missing DTI 
or arterial stiffness/pressure pulsatility data. Due to small numbers, race other than black or 
white, and black participants examined at MD or MN will be excluded. For optimal PWV data 
quality, the analyses will also exclude participants with evidence of a major arrhythmia on the 
12-lead ECG (MN code 8-1-3, 8-3-1, 8-3-2), and participants with aortic aneurysm, aortic 
stenosis and aortic regurgitation.  
 
Exposures (visit 5): cfPWV and cPP were measured using the VP-1000 plus system (Omron Co., 
Ltd., Kyoto, Japan). Carotid-femoral pulse wave velocity (cfPWV) is the gold standard measure 
of central arterial stiffness.24 cfPWV was calculated using the following formula: path length 



(cm) = carotid-femoral distance (cm) – (suprasternal notch – carotid distance (cm)). A 
minimum of two measurements were taken per participant and the last two usable measurements 
(i.e., non-zero values) were averaged. cSBP were measured in the supine position using an 
applanation tonometry sensor over the right common carotid artery using the automated Omron 
VP-1000 plus device (Omron Healthcare Co, Kyoto, Japan). A recorded carotid waveform was 
calibrated with simultaneously measured supine brachial mean arterial pressure (MAP) and 
diastolic blood pressure (DBP) using a cuff over the arm. The calibration assumes that MAP and 
DBP are largely constant between the brachial and carotid arteries.25,26 cPP was defined as the 
difference between cSBP minus supine right brachial DBP, with the assumption that DBP values 
are largely uniform throughout the arterial tree.27 
 
Outcomes (visit 5): DTI data was measured using 2.7 mm slices for Skyra and Verio scanners 
and 3 mm slices for Trio scanners. FA (ranges from 0.05 to 0.81) and MD (ranges from 0.0004 
to 0.0019) were extracted for regions of interest (ROIs) using the ICBM DTI-81 Atlas.28 ROIs 
include the following composite ones: tracts in the brainstem, commissural fiber, association 
fibers, projection fibers and a whole-brain composite measure. FA is normally distributed, and 
MD is right skewed. 
 
Covariates (visit 5): age, sex, education, smoking, alcohol use, BMI, heart rate, APOE genotype, 
hypertension, diabetes, total cholesterol, WMH. 
 
Effect measure modifiers: In addition to race, individuals carrying APOE4 allelic variant has 
shown reduction of FA and increase in MD in healthy adults compared to non-carriers,29 which 
may be a potential moderator between arterial stiffness and pulsatility with white matter 
integrity.  
 
Analysis plan: 
For quantification of arterial stiffness and pressure pulsatility, cfPWV and cPP will be 
dichotomized at the upper 25th percentile to, indicate ‘high’ arterial stiffness and pulsatility. 
Analysis of participant characteristics at visit 5 will be conducted using T-test or chi-square test 
according to categories of cfPWV and cPP, respectively. We will examine the continuous 
distributions of FA or MD, and if observed to be non-normally distributed, the values will be 
log-transformed. 
 
We will incorporate the ARIC-NCS MRI sampling weights in the analysis. Thus, weighted linear 
regression models will assess the relationship between each measure of arterial stiffness 
(cfPWV) and pressure pulsatility (cPP) with each DTI measure of white matter integrity (FA and 
MD). Due to their associations with both arterial stiffness/pressure pulsatility and cerebral small 
vessel disease, potential confounders include age, sex, education, smoking, heart rate, ApoE4 
allele genotype, hypertension, diabetes, total cholesterol. We will further adjust for white matter 
hyperintensities (as measured by structural MRI), due to the strong correlation between WMH 
and FA and MD. We will examine potential interactions between cfPWV and cPP. In addition, 
we will examine potential effect measure modification by race and ApoE4 allele genotype.  
 
Methodological limitations: 



The cross-sectional design of this study precludes causal inferences about arterial 
stiffness/pulsatility and white matter integrity. Furthermore, participants of this study only 
include individuals ≥70 years of age, which constrains generalizability and can introduce 
selection bias. 
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